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Abstract
The increasing prevalence of obesity has drawn attention to intra-pancreatic fat deposition (IPFD), a condition associat-
ed with metabolic disorders such as type 2 diabetes, chronic pancreatitis, and pancreatic cancer. Although initially linked 
to general obesity, IPFD is now recognized in non-obese individuals, with its prevalence often underestimated due to 
the absence in International Classification of Diseases. Chemical shift-encoded magnetic resonance imaging (MRI) has 
become the preferred method for non-invasive quantification of IPFD, providing insights into its role in metabolic dys-
functions, including insulin resistance and lipotoxicity. This rapid review explored the pathophysiology of IPFD, focusing 
on fatty infiltration and replacement mechanisms, and discussed how dietary factors can influence their progression 
and management. Recent studies on macronutrient and micronutrient intake in relation to IPFD, particularly those using 
chemical shift-encoded MRI, were reviewed to identify dietary contributors and their metabolic impacts. Among mac-
ronutrients, excessive monosaccharide intake linked to worse outcomes, while resistant starch and monounsaturated 
fats showed protective effects. Micronutrients like manganese, selenium, iodine, and vitamins B3, B6, B12, and folate 
demonstrated significant metabolic benefits. Further research is needed to identify other dietary contributors and devel-
op effective targeted nutritional interventions to reduce the burden of IPFD.
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1. INTRODUCTION

The increasing prevalence of obesity has brought attention 
to organ dysfunction linked to ectopic fat accumulation, such 
as intra-pancreatic fat deposition (IPFD), also known as fatty 
pancreas disease [1]. While a small amount of intra-pancre-
atic fat is normal and tends to increase with age, its excessive 

accumulation is more prevalent among individuals of Asian 
descent and has been strongly correlated to metabolic disor-
ders, such as type 2 diabetes mellitus, chronic pancreatitis, 
and pancreatic ductal adenocarcinoma [1]. Although IPFD 
was initially thought to be exclusive to those with general 
obesity when first described by Robertson Ogilvie in the 
1930s, it has since been recognized in non-obese individuals 
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as well [2–4]. The absence of an International Classification 
of Diseases (ICD) code for fatty pancreas disease compli-
cates its prevalence estimation in large-scale studies [5].

Chemical shift-encoded magnetic resonance imaging 
(MRI) has become the gold standard for quantifying IPFD 
[6]. Unlike computed tomography, which relies on attenua-
tion values, MRI provides superior resolution for parenchy-
mal organs such as the pancreas, enabling precise, non-inva-
sive assessment of fat accumulation [6–8]. For example, an 
observational study from Hong Kong involving over 8000 
individuals used MRI to estimate the prevalence of IPFD, 
which was 16.1% [9]. However, this finding represented 
a specific population, and its generalizability was deemed 
uncertain, highlighting the need for additional studies across 
diverse cohorts.

Several studies found the significant role of diet in the 
pathogenesis and treatment management of IPFD. For exam-
ple, a randomized controlled trial from Israel demonstrated 
that a Mediterranean diet (characterized by low in carbohy-
drates and rich in unsaturated fats [(MUFA)]) significantly 
reduced IPFD (quantified by MRI) compared to a low-fat 
diet over an 18-month period [10]. This suggests that dietary 
modifications may play an important role in managing this 
condition. 

In this rapid review, the primary objective was to introduce 
the pathophysiology of IPFD and the secondary objective 
was to review how dietary components, both macronutrients 
(carbohydrates and fats) and micronutrients (minerals and 
vitamins), can influence the development and progression of 
MRI-derived IPFD measurements and its associated meta-
bolic sequalae.

2. PATHOPHYSIOLOGY & MECHA-
NISM OF INTRA-PANCREATIC FAT 
DEPOSITION (IPFD)

IPFD has a significant impact on both endocrine and exo-
crine pancreatic diseases, including diabetes mellitus, car-
diovascular conditions, acute and chronic pancreatitis, and 
pancreatic cancer. 

IPFD has been associated with a spectrum of pancreat-

ic diseases. A comprehensive review published in Nature 
Reviews Gastroenterology and Hepatology consolidated 
evidence from several large general-population-based cohort 
studies and systematic literature reviews linking IPFD with 
diabetes mellitus, acute and chronic pancreatitis, and pan-
creatic cancer [11]. The pathogenesis of these diseases often 
progresses along a continuum influenced by both the extent 
and distribution of fat within the pancreas. 

IPFD develops through two primary mechanisms: fatty 
infiltration and fatty replacement. Fatty infiltration refers to 
the accumulation of excess adipocytes in pancreatic tissue, 
primarily in individuals without pre-existing pancreatic dis-
eases, and is often driven by obesity [12–14]. By contrast, 
fatty replacement involves the substitution of pancreatic 
acinar cells with adipocytes following cell death. This pro-
cess is commonly seen in cases of recurrent pancreatitis 
and is linked to genetic predisposition, viral infections, iron 
overload, corticosteroid use, or pancreatic duct obstruction 
[13]. Morphologically, IPFD is evidenced by inter-lobular 
or intra-lobular fat deposits, indicating both the degree and 
location of fat accumulation within pancreatic tissue. Under-
standing these mechanisms is essential for comprehending 
the development and progression of pancreatic diseases as-
sociated with IPFD.

2.1. Inter-lobular fat
Excess fat accumulation in the pancreas leads to the for-

mation of inter-lobular adipocytes, which are resistant to 
lipolysis under normal conditions [15]. However, during 
lipolysis, these adipocytes release unsaturated fatty acids that 
inhibit mitochondrial complexes I and IV [16–18]. This mi-
tochondrial dysfunction results in parenchymal necrosis and 
can lead to multisystem organ failure, exacerbating the se-
verity of acute pancreatitis [19–22]. Elevated levels of fatty 
acids also stimulate the production of proinflammatory cyto-
kines, such as tumor necrosis factor-α and interleukin-6, and 
worsen disease severity [17,23,24]. Moreover, mitochondrial 
dysregulation caused by these fatty acids raises intracellular 
calcium levels and oxidative stress, promoting apoptosis of 
β-cells and acinar cells [16,17,25,26]. This apoptosis impairs 
insulin secretion, increases insulin resistance, and contributes 



https://doi.org/10.32895/UMP.MPR.9.2.13 https://www.medpharmres.com |  143

Ko et al.

to the progression of metabolic syndrome [26,27].

2.2. Intra-lobular fat 
Intracellular fat accumulation in acinar cells leads to the 

formation of lipid droplets, which disrupts the release of 
adipokines by increasing lipocalin-2 [28,29] and decreasing 
adiponectin and fetuin levels [30–32]. This disruption creates 
a pro-inflammatory environment that exacerbates systemic 
inflammation and metabolic disturbances, including lipotox-
icity and endocrine dysfunction [33–36]. In addition to these 
metabolic effects, excess IPFD has been associated with pan-
creatic tumorigenesis. Elevated cytokine levels, such as C-C 
motif ligand 2, attract monocytes to the pancreas, where they 
become inflammatory macrophages [37,38]. High levels of 
inflammatory markers like leptin are associated with tumor 
necrosis factor-α, suggesting a role of IPFD in early pancre-
atic cancer development [39].

IPFD is also associated with the acinar-to-adipocyte trans-
differentiation, a process where pancreatic acinar cells are 
transformed into adipocyte-like cells. This transformation is 
primarily driven by chronic inflammation and recurrent epi-
sodes of pancreatitis (such as c-Myc, Gata6, HNF6, STK11, 
and EWSR1/FLI1) drive this process [40–43], leading to 
the fatty replacement of pancreatic tissue [44]. Furthermore, 
intra-cellular fat in β-cells can lead to their dedifferentiation 
and functional impairment. Elevated free fatty acids reduce 
the expression of essential transcription factors (i.e., GATA6 
and PAX4) and lead to β-cell dysfunction. This reduction 
further accelerates the development of diabetes mellitus and 
chronic pancreatitis [45–47].

The abovementioned mechanisms, including inter-lobu-
lar fat deposition, intra-lobular lipid accumulation and the 
acinar-to-adipocyte transdifferentiation, collectively illus-
trate the complex pathogenesis of IPFD and its contribution 
to pancreatic dysfunction. Given that these pathophysiological 
processes might lead to metabolic disturbances, it is essential to 
consider the role of moderating factors such as dietary intake. 

3. DIET 

Dietary intake emerges as an important modifiable factor 

influencing metabolic disturbances. Research showed that 
IPFD and elevated levels of fatty acids disrupt metabo-
lism, impairing both insulin secretion and β-cell function 
[33,48,49]. Dietary intake is crucial in the pathogenesis and 
treatment management of IPFD, with both macronutrients 
and micronutrients influencing the progression of metabolic 
syndrome associated with IPFD [10,50,51]. Understanding 
how dietary components affect IPFD is essential for develop-
ing targeted prevention and treatment strategy.

3.1. Macronutrients

3.1.1. Association with carbohydrate intake
Carbohydrates, a primary energy source, play a central role 

in metabolic processes [52]. However, excessive consump-
tion of refined carbohydrates and simple sugars is strongly 
associated with the development of IPFD and an increased 
risk of metabolic syndrome [53]. The impact of dietary car-
bohydrates on metabolic pathways and their association with 
IPFD are varied and depend on whether it consists of simple 
sugars or polysaccharides. 

Simple sugars, such as monosaccharides (e.g., glucose, 
fructose), are rapidly digested and absorbed in the small in-
testine to provide energy [54,55]. High fructose intake, par-
ticularly from processed foods, has been shown to enhance 
triglyceride synthesis, disrupt normal metabolic pathways, 
and contribute to the development of insulin resistance 
[56,57]. For example, excessive intake of monosaccharides 
is associated with impaired insulin regulation, with fructose 
consumption specifically associated with elevated fasting 
insulin levels and increased insulin resistance in individuals 
both with and without pre-existing metabolic conditions 
[58]. In individuals with high IPFD, monosaccharide intake 
is positively associated with insulin traits, suggesting the 
consumption of food high in free glucose and fructose may 
exacerbate the risk of metabolic syndrome following acute 
pancreatitis [58].

By contrast, polysaccharides (starch and non-starch poly-
saccharides) which consist of long chains of monosaccharide 
units connected by glycosidic bonds, have demonstrated a 
protective effect [58]. 
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Resistant starch is not absorbed in the small intestine; in-
stead, it is fermented in the large intestine, which improves 
metabolic health by reducing the levels of insulin, glucagon‐
like peptide-1 (GLP-1), and gastric inhibitory polypeptide 
[59,60]. Increasing the intake of resistant starch through 
functional foods can reduce the risk of metabolic syndrome, 
especially for individuals with high IPFD.

IPFD also acts as an important modifier in the relation-
ship between dietary carbohydrate intake and metabolic 
outcomes. Specifically, individuals with high IPFD demon-
strated a notable difference in the impact of carbohydrate 
consumption on insulin-related traits, compared to those 
with lower levels of IPFD [58]. Therefore, IPFD is a part of 
the pathogenesis of metabolic syndrome in post-pancreatitis 
settings, where a habitual dietary intake of carbohydrates (low 
intake of resistant starch and high intake of monosaccha-
rides) and high IPFD may synergistically increase the risk of 
developing insulin resistance.

3.1.2. Association with fat intake 
Fat, a macronutrient found in most food groups, plays a vi-

tal role in energy production, supporting physiological func-
tions, and maintaining structural integrity within the body. 
Dietary fat intake also influences metabolic pathways and 
leads to metabolic adaptations that affect insulin sensitivity 
and fat storage [61,62]. Previous research has highlighted the 
impact of dietary fat intake on ectopic fat accumulation and 
the metabolic sequelae associated with IPFD. A randomized 
controlled trial demonstrated that a Mediterranean diet, rich 
in unsaturated fats and low in carbohydrates, significantly 
reduced IPFD [10]. Another randomized controlled trial of 
nutritional intervention found that high-fat diets, including 
ketone supplementation, significantly lowered plasma glu-
cose levels in individuals with new-onset diabetes after pan-
creatitis (NODAP).

The relationship between dietary fat intake and insulin 
resistance is significantly influenced by the extent of ectopic 
fat deposition. In individuals with high IPFD, there is a sig-
nificant inverse association between total dietary fat intake 
and insulin resistance, where higher fat intake is related with 
reduced insulin resistance [51]. However, this relationship 

is not observed in individuals with low IPFD [51]. This con-
text-dependent effect suggests that high IPFD modifies the 
metabolic response to dietary fat and contributes to insulin 
resistance, particularly following acute pancreatitis [63].

The composition and quality of dietary fat further influ-
ence insulin resistance. For instance, a study comparing three 
isocaloric diets, one high in monounsaturated fats (MUFA), 
one high in saturated fats, and one high in carbohydrates, 
showed that the MUFA-rich diet significantly improved in-
sulin sensitivity and reduced plasma glucose levels [64]. In 
addition, MUFA intake was associated with improved mark-
ers of insulin resistance in individuals with high IPFD [51]. 
These findings indicate that the type of dietary fat consumed 
plays an important role in the metabolic pathways. In partic-
ular, dietary intake of MUFA instead of saturated fats could 
benefit individuals with high IPFD and a history of pancre-
atitis by reducing the risk of metabolic syndrome associated 
with IPFD. 

3.2. Micronutrients

3.2.1. Association with mineral intake 
Minerals are essential inorganic elements vital for human 

health, playing key roles in biochemical processes for both 
functional and structural purposes. They activate insulin 
receptors and help regulate insulin sensitivity [65]. Several 
minerals, such as iron, phosphorus, and zinc, were associated 
with metabolic changes following acute pancreatitis [66]. In 
particular, manganese and iodine were deemed important in 
glucose metabolism as it showed significant association with 
fasting plasma glucose and glycated hemoglobin [66]. 

In individuals with acute pancreatitis who are at higher 
risk of developing IPFD, manganese-related antioxidant 
activity is often altered. Plasma levels of manganese super-
oxide dismutase (MnSOD) decrease, while MnSOD levels 
in erythrocytes increase [67]. This imbalance was due to oxi-
dative stress. MnSOD catalyzes the conversion of the dispro-
portionate superoxide anion radicals into hydrogen peroxide 
and molecular oxygen, thereby helping to reduce reactive 
oxidant species and oxidative stress [68,69]. This reduction 
ultimately improves islet β-cell function, impacting glucose 
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metabolism and insulin secretion [68]. Given that MnSOD 
relies on manganese as a critical component for its enzy-
matic activity [66,67], adequate manganese intake may help 
improve glucose metabolism and reduce acute inflammation 
associated with IPFD.

Selenium and iodine intake also influence the severity and 
progression of IPFD, including its association with NODAP. 
Selenium, a key antioxidant, and iodine, essential for thyroid 
hormone production, work together to regulate glucose me-
tabolism [70,71]. For instance, a 1-μg increase in selenium 
and iodine intake was significantly associated with a 1.71% 
decrease in insulin sensitivity (homeostatic model assess-
ment of insulin sensitivity [HOMA-S]) and 0.17 mmol/mol 
increase in glycated hemoglobin [66]. These findings high-
lighted their role in enhancing insulin sensitivity [66]. This 
dual mineral effect not only impacts the metabolic syndrome 
associated with IPFD, but also influences the severity of 
IPFD by decreasing thyroid stimulating hormone level.

Iron is an essential mineral for the structural and function-
al components of protein. Previous study showed that indi-
viduals with NODAP experience disrupted iron metabolism, 
marked by elevated hepcidin and reduced ferritin levels [72]. 
Increased hepcidin impairs iron absorption and release, while 
low ferritin levels result in depleted iron stores, contributing 
to an imbalance in iron regulation and exacerbating metabol-
ic syndrome. Furthermore, dietary intake of iron influenced 
glucose metabolism, with each milligram increase in total 
iron intake significantly associated with decrease in a 3.2% 
of HOMA-S among individuals with NODAP [66]. Dietary 
iron exists in two forms, which are haem and non-haem, dif-
fering in chemical structure, bioavailability, and food sources 
[73]. Notably, only non-heme iron intake is significantly 
associated with hepcidin and pancreas pathological changes, 
as indicated by the transverse relaxation rate of tissue water 
measured through MRI [74]. It is probable that dietary iron 
from plant-based sources (legumes, grains, vegetables, and 
dried fruits) may influence pathological changes in the pancreas. 

3.3. Association with vitamin intake
Vitamins play crucial roles in metabolic pathways, where 

their deficiency can lead to metabolic disturbances including 

oxidative stress, insulin resistance, endothelial dysfunction, 
and impaired glucose and lipid metabolism [75]. In the con-
text of endocrine and exocrine pancreatic diseases, ectopic 
fat accumulation may damage pancreatic cells, resulting in 
dysfunction and insufficiency. This impairment hinders nu-
trient digestion and absorption, resulting in malabsorptive 
conditions and subsequent vitamin deficiencies [76,77]. 

Water-soluble vitamins are particularly prone to deficiency 
compared to fat-soluble vitamins, as they must be obtained 
through dietary intake due to the human body’s inability to 
synthesize them [78,79]. In particular, vitamin B3 intake 
shows a significant association with pancreatic beta-cell 
function (Homeostatic Model Assessment of beta-cell func-
tion [HOMA-β]) in individuals with NODAP [80]. Previous 
research found that each percent decrease in vitamin B3 
intake was associated with a 1.35% reduction in HOMA-β, 
which highlighted its impact on insulin secretion and pan-
creatic function [80]. Nicotinic acid, a form of vitamin B3, 
likely mediates this effect by activating the nicotinic acid 
G-protein-coupled receptor GPR109a [80–82]. Activation of 
this receptor reduces the flux of free fatty acids to the liver 
by inhibiting their release from adipocytes [80]. Thus, it is 
possible to improve metabolic perturbation, enhance lipid 
homeostasis, and attenuate progression to IPFD. Similarly, 
habitual intake of other water-soluble vitamins such as vi-
tamin B6, vitamin B12, and folate showed their association 
with IPFD, likely due to their roles in the methionine me-
tabolism and phosphatidylcholine synthesis [83]. Vitamin 
B6 acts as a coenzyme in the conversion of methionine to 
cysteine, a process crucial for maintaining homocysteine lev-
els and overall methylation capacity [83]. Vitamin B12 and 
folate are essential for the regeneration of methionine from 
homocysteine, thereby supporting the continuous availabil-
ity of S-adenosylmethionine for methylation reactions [83]. 
These reactions are critical for the synthesis of phosphati-
dylcholine, a major phospholipid involved in cell membrane 
integrity and lipid transport. Consequently, a deficiency in 
these vitamins can disrupt methionine metabolism and phos-
phatidylcholine synthesis, promoting lipid droplet formation 
and leading to ectopic fat accumulation in the pancreas. 

Of several fat-soluble vitamins, only one study to date has 
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demonstrated a significant finding. Habitual intake of vita-
min A (in the form of provitamin carotenoid) showed signif-
icant association with HOMA-β in individuals with NODAP 
[80]. A 1% decrease in α-carotene, β-carotene, and total car-
otene intake, was associated with decrease in HOMA-β by 
0.42%, 0.60%, and 0.63%, respectively [80]. Further studies 
are needed to demonstrate the role of fat-soluble vitamins in 
improving metabolic syndrome in individuals after an attack 
of AP through their beneficial effects on insulin secretion.

4. CONCLUSION

The increasing prevalence of IPFD underscored its role in 
metabolic disorders such as type 2 diabetes and chronic pan-
creatitis. Despite challenges in prevalence estimation due to 
the absence of an ICD code, advancements in MRI improved 
the current knowledge of IPFD. This review highlighted the 
influence of dietary macronutrients (i.e., resistant starch and 
MUFAs) and micronutrients (i.e., including manganese, se-
lenium, and vitamins B3, B6, and B12) in managing IPFD. 
While the evidence detailing the mechanisms of IPFD and 
relationship with macronutrients are growing, the literature 
basis on micronutrients remains comparatively limited. In 
particular, the specific interactions between dietary compo-
nents and the pathophysiological processes of IPFD (e.g., 
how resistant starch may counteract interlobular fat accu-
mulation or how certain micronutrients might influence aci-
nar-to-adipocyte transdifferentiation) remain underexplored. 
This discrepancy highlights an important research gap that 
warrants further investigation to design personalized nutri-
tional strategies and improve clinical applications in IPFD 
management.
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