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Abstract  13 

Introduction: The increasing use of wearable activity trackers (WAT) for home-based sleep 14 

assessment has raised necessity to clarify their accuracy, particularly in resource-limited settings. 15 

This study aimed to validate WAT by polysomnography (PSG) for measuring key sleep 16 

parameters—including total sleep time (TST), sleep efficiency (SE), wake after sleep onset 17 

(WASO), sleep onset latency (SOL), and sleep stage distribution—in a Vietnamese clinical 18 

population, with implications for primary care applications.  19 

Methods: This cross-sectional study was conducted at the University Medical Center-Ho Chi 20 

Minh City, Vietnam, from December 2023 to July 2024. Sleep data were collected from 47 21 

patients undergoing overnight PSG while simultaneously wearing a WAT. Sensitivity, 22 

specificity, and accuracy in detecting sleep versus wakefulness were assessed using epoch-by-23 

epoch comparisons. Bland-Altman analysis was used to evaluate the agreement between WAT 24 

and PSG measurements, with mean differences and limits of agreement calculated for each sleep 25 

parameter. 26 

Results: The WAT demonstrated high sensitivity (93%) but low specificity (44%) and an 27 

accuracy of 79% in identifying sleep versus wakefulness when compared to PSG. No significant 28 

differences were found between the two devices in measuring total sleep time (TST), sleep 29 

efficiency (SE), sleep onset latency (SOL), and sleep stages. However, the WAT significantly 30 

underestimated wake-after-sleep onset (WASO) compared to PSG (p=0.011).  31 

Conclusion: The results are promising, but further confirmation in larger studies is required to 32 

confirm the utility of WAT in primary care settings in Vietnam. 33 

Keywords: Wearable activity trackers, sleep measurement, diagnostic accuracy, primary care, 34 

Vietnam 35 

 36 

1. Introduction 37 

Sleep is a fundamental physiological process, vital for maintaining optimal health and well-38 

being. Disruptions in sleep, particularly insomnia, can lead to a wide range of adverse effects, 39 

including impaired cognitive function, excessive daytime sleepiness, and declines in both 40 

physical and mental health, which ultimately diminish an individual's quality of life (1). 41 

Epidemiological studies have shown that insomnia affects a significant portion of the adult 42 

population, with prevalence rates ranging from 30% to 55% (2, 3). In the United States, the 2020 43 
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National Health Interview Survey reported that 14.5% of adults had difficulty initiating sleep, 44 

and 17.8% struggled to maintain sleep quality over a 30-day period.(4) 45 

Accurate assessment of sleep is essential for effective diagnosis and management of insomnia. 46 

Polysomnography (PSG) is considered the gold standard for sleep evaluation, as it provides 47 

detailed physiological data on sleep patterns and abnormalities (5). However, PSG is costly, 48 

requires overnight monitoring in specialized centers, and may cause patient discomfort due to 49 

the unfamiliar environment and multiple sensors. Recent advancements have led to the 50 

development of wearable activity trackers (WAT), such as smartwatches and fitness trackers, 51 

which offer a more convenient and accessible alternative for home-based sleep monitoring. 52 

These devices leverage advanced technology to track and record sleep metrics, providing 53 

benefits such as affordability, ease of use, convenience, and the ability for individuals to monitor 54 

their sleep in familiar home environments (6). 55 

In Vietnam, primary care physicians frequently encounter patients with sleep complaints, 56 

highlighting insomnia as a growing public health concern. However, limited research on the 57 

clinical utility of WAT hinders effective diagnostic solution in Vietnamese populations, 58 

particularly among individuals with suspected sleep disorders. This study aimed to validate 59 

WAT by comparing its sleep measurement capabilities with PSG in patients referred for 60 

overnight sleep assessment at the University Medical Center-Ho Chi Minh City (UMC HCMC), 61 

Vietnam. The findings can offer valuable insights into the feasibility and potential benefits of 62 

incorporating WAT into primary care practice. 63 

2. Methods 64 

2.1. Study design & participants: 65 

2.1.1. Study design 66 

A cross-sectional study was conducted at the Sleep Disorders Center, University Medical 67 

Center-Ho Chi Minh City (UMC HCMC). Polysomnography was conducted under standard 68 

conditions using the SOMNOlab 2 system, and participants wore consumer-grade WAT 69 

overnight. The WAT data were collected the following morning, and PSG data served as the 70 

reference standard.  71 

2.1.2. Inclusion and exclusion criteria 72 

The eligible participants were adults (≥18 years) referred for overnight sleep measurement by 73 

PSG and provided written informed consent. 74 
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Exclusion criteria encompassed: 75 

- Known diagnosis of other primary sleep disorders (such as obstructive sleep apnea, 76 

restless legs syndrome, or circadian rhythm disorders); 77 

- Severe psychiatric conditions (including major depression, anxiety disorders, 78 

schizophrenia, or bipolar disorder); 79 

- Uncontrolled medical illnesses (such as heart failure or renal failure); 80 

- Pregnancy or breastfeeding; 81 

- Current use of sedatives, antidepressants, antipsychotics, antihistamines, or any 82 

substances known to affect sleep architecture. 83 

2.1.3. Recruitment strategy 84 

Participants were recruited using the convenience sampling method from the Sleep Disorders 85 

Center and then screened for eligibility based on the inclusion and exclusion criteria. Due to 86 

resource constraints at our center, only one PSG observation could be scheduled per night, which 87 

limited the total number of enrolled participants during the study period.  88 

2.2. Sleep measurements and procedures 89 

2.2.1. Polysomnography (PSG) as reference procedure 90 

PSG was performed using the SOMNOlab 2 system, with sleep stages scored according to the 91 

American Academy of Sleep Medicine criteria (2017 updated version) (7). Collected metrics 92 

included total sleep time (TST), sleep efficiency (SE), sleep onset latency (SOL), wake after 93 

sleep onset (WASO), light sleep, deep sleep, and rapid eye movement (REM) sleep. Prior to 94 

each recording session, the SOMNOlab 2 polysomnography system was calibrated according to 95 

the manufacturer's instructions. This included impedance checks for all electrodes and 96 

verification of signal quality across all channels (EEG, EOG, EMG, ECG, airflow, and 97 

oximetry) before lights-off. 98 

2.2.2. Fitbit Charge 5 as the validation instrument for WAT 99 

Fitbit Charge 5 was chosen as the primary research instrument to validate the sleep measurement 100 

of WATs for their affordability and ease-of-use functionality in the context of limited resources. 101 

The device was worn from bedtime until the following morning in the laboratory setting. Each 102 

device was reset, updated to the latest firmware, and fully charged prior to use. WAT was placed 103 

on the participant’s non-dominant wrist with skin contact visually confirmed by staff. Device 104 

placement was re-checked before lights-off. After each session, the WAT was immediately 105 
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synchronized with the corresponding application for data transfer and accurate alignment with 106 

PSG records. Sleep parameters recorded by the WAT (including TST, SE, SOL, WASO, and 107 

sleep stage distributions) were matched to corresponding PSG data, based on the definitions 108 

provided on the mobile application and corresponding website. 109 

2.3 Sample size calculation: 110 

The sample size was estimated using the formula for sensitivity estimation provided by Buderer 111 

(8): 112 n =  1.96 x sens x (1 − sens) 𝑑ଶ 𝑥 𝑃  113 

 114 

Where: 115 

- sens = Estimated sensitivity (0.95, based on previous study (9)) 116 

- d = Margin of error (0.2) 117 

- P = Prevalence of insomnia in the target population (15%, based on epidemiological data from 118 

China (10)) 119 

Therefore, the minimum required sample size was calculated to be 34 participants. 120 

While we acknowledged that a smaller margin of error (e.g., d = 0.1) would be more ideal for a 121 

validation study, the available population for PSG at our institution was limited. Notably, at the 122 

UMC HCMC, only one PSG test could be scheduled per night due to resource constraints and 123 

high clinical demand. Therefore, the number of participants enrolled was determined by the 124 

maximum feasible number of eligible patients during the study period, resulting in a final sample 125 

size of 47 observations after data cleaning. 126 

2.4 Data collection methods 127 

Data were collected using a structured form comprising three sections. Section 1 documented 128 

general information, including birth year, gender, height, weight, and BMI. Section 2 recorded 129 

metrics PSG metrics (lights-off/on times, TST, SOL, WASO, light sleep, deep sleep, REM sleep, 130 

and SE). Section 3 captured comparable metrics from WAT (TST, SOL, WASO, light sleep, 131 

deep sleep, REM sleep, and SE). 132 

Demographic variables, including age, gender, height, weight, and BMI, were collected for all 133 

participants for descriptive analysis. No subgroup analyses or statistical adjustments for these 134 

variables were performed, as the study was primarily designed to validate the agreement 135 

between devices in the overall cohort. 136 
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Eligible participants referred for overnight PSG at the UMC HCMC were scheduled between 137 

8:00 PM and 9:00 PM. Prior to the study, both PSG and WAT devices were calibrated. The 138 

WAT was set to “night-time mode” to minimize disturbances during sleep. Participants were 139 

instructed on the appropriate use of WAT and on PSG procedures. Data were retrieved the 140 

following morning as mentioned above. 141 

2.5 Data analysis 142 

PSG data categorized sleep stages into wake, Stage 1 (S1), Stage 2 (S2), Stage 3 (S3), Stage 4 143 

(S4), and REM sleep. For comparison with results from WAT, PSG stages were grouped as 144 

follows: light sleep (S1 + S2), deep sleep (S3 + S4), and REM sleep (REM). Wake epochs were 145 

labeled as “0” and sleep epochs as “1,” with corresponding time intervals recorded for analysis.  146 

For epoch-by-epoch comparison, both PSG and WAT data were divided into 30-second epochs. 147 

Epoch alignment was based on the lights-off and lights-on times recorded by the PSG system, 148 

ensuring that only epochs within the same time interval were included for analysis. Time 149 

synchronization was confirmed by matching the start and end times on both devices. Any epochs 150 

that were missing, incomplete, or identified as artifacts on either device were excluded from the 151 

analysis. 152 

Sleep stage scoring for PSG data was performed by a single trained technician in accordance 153 

with the American Academy of Sleep Medicine (AASM) criteria, 2017 update, as mentioned 154 

above. Inter-rater reliability was not assessed. Sleep-wake classification by WAT was 155 

determined by the device’s proprietary algorithm, without independent validation. 156 

Descriptive statistics were used to summarize sleep parameters obtained from both devices.  157 

Epoch-by-epoch comparisons (30-second epochs) were conducted to assess the WAT’s ability 158 

to detect sleep and wake states relative to PSG. Sensitivity was defined as the proportion of 159 

correctly identified sleep epochs, specificity as the proportion of correctly identified wake 160 

epochs, and accuracy as the overall agreement between methods. 161 

Agreement between PSG and WAT measurements for TST, SOL, WASO, light sleep, deep 162 

sleep, REM sleep, and SE were further analyzed using Bland-Altman plots. Mean differences 163 

and the 95% limits of agreement (LOA) were calculated to evaluate the magnitude and direction 164 

of potential biases. A positive mean difference indicated that the WAT underestimated a specific 165 

sleep variable relative to PSG, whereas a negative value reflected overestimation. 166 
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The normality of paired differences for each sleep parameter was assessed using the Shapiro–167 

Wilk test, with visual inspection via Q–Q plots and histograms. Statistical analysis was 168 

performed using R (version 4.0.1), with significance set at a p-value < 0.05. 169 

2.6 Ethics 170 

Ethical approval was granted by the Institutional Review Board of the University of Medicine 171 

and Pharmacy at Ho Chi Minh City (approval number 998/HĐĐĐ - ĐHYD, dated October 20, 172 

2023). Written informed consent was obtained from all participants before the commencement 173 

of the study in accordance with the Declaration of Helsinki. 174 

3. Results 175 

3.1 General characteristics of the participants 176 

The study enrolled a total of 50 patients who met the inclusion criteria. After data cleaning and 177 

the exclusion of incomplete records, 47 participants (94% of the enrolled cohort) were eligible 178 

for analysis. The mean (SD) age was 48.42 (12.45) years (range, 28–73), and 66% were male. 179 

According to the Asia-Pacific classification of body mass index, 61.7% of participants were 180 

categorized as obese.  181 

The participants had a mean total sleep time of approximately 336 minutes, corresponding to an 182 

average sleep efficiency of approximately 76% (Table 1). Most of their rest was spent in light 183 

sleep, followed by REM sleep, with deep sleep representing the smallest proportion. Additional 184 

details regarding median values and ranges for these parameters are provided in Table 1. 185 

[Table 1] 186 

3.2 Comparison between wearable activity trackers and polysomnography 187 

As shown in Table 2, the WAT demonstrated a high sensitivity of 0.93 (SD 0.06; 95% CI, 0.91–188 

0.95), indicating a high probability of correctly identifying sleep epochs. In contrast, the 189 

specificity for detecting wakefulness was lower at 0.44 (SD 0.19; 95% CI, 0.38–0.49), 190 

suggesting a tendency to misclassify wake epochs as sleep. The device’s overall accuracy, 191 

representing the proportion of correctly classified epochs (sleep or wake), was 0.79 (SD 0.09; 192 

95% CI, 0.76–0.81). 193 

[Table 2] 194 

3.3 Bland-Altman mean difference analysis of sleep parameters: 195 

The Shapiro–Wilk test indicated that the paired differences for TST, SE, SoL, WASO, and LS 196 

were not normally distributed (all p < 0.05), while DS and REM differences did not show 197 
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significant deviation from normality (p > 0.05). Figure 1 illustrates the Bland–Altman plots 198 

comparing sleep parameters measured by the WAT with those obtained from polysomnography 199 

(PSG). The WAT tended to overestimate TST by a mean (SD) of 30.07 minutes (P = 0.835) and 200 

SE by 6.15% (P = 0.078), though neither difference was statistically significant. Sleep onset 201 

latency (SoL) was slightly underestimated by 3.36 minutes (P = 0.691), which was also not 202 

significant. In contrast, WAT significantly underestimated wake after sleep onset (WASO) by 203 

a mean of 23.11 minutes (P = 0.011). No significant differences were detected in the 204 

measurement of light sleep (P = 0.63), deep sleep (P = 0.475), or REM sleep (P = 0.995) between 205 

WAT and PSG (Table 3). 206 

[Figure 1] 207 

[Table 3] 208 

4. Discussion 209 

4.1. Validation of wearable activity trackers in sleep measurement 210 

The findings contribute to the growing body of work validating WAT, particularly among 211 

patients with sleep disorders. The unique context of our research lies in the focal point on a 212 

Vietnamese clinical population and the exploration of the potential application of a consumer-213 

grade WAT - the Fitbit Charge 5 - in resource-limited primary care settings in Vietnam. We 214 

evaluated the WAT against the gold standard of polysomnography (PSG) in patients referred 215 

for overnight sleep assessment. We found that the WAT demonstrated a high sensitivity of 93% 216 

(95% CI: 91-95%) for detecting sleep, but its specificity was relatively low at 44% (95% CI: 217 

38–49%), resulting in an overall accuracy of 79% (95% CI: 76–81%). In addition, there were 218 

no statistically significant differences between WAT and PSG for total sleep time (TST), sleep 219 

efficiency (SE), sleep onset latency (SoL), or sleep stage classification, suggesting that the 220 

device can reliably measure these parameters; however, the WAT significantly underestimated 221 

wake after sleep onset (WASO) by an average of 23.11 minutes (p = 0.011). 222 

The high sensitivity indicates that the WAT is effective at identifying sleep epochs, which can 223 

aid in ruling out cases of clinically significant insomnia. Our sensitivity findings are comparable 224 

to those reported in previous studies on similar devices (11-14). In contrast, the relatively low 225 

specificity suggested that the device is less capable of accurately distinguishing wakefulness, 226 

which may lead to an overestimation of sleep duration. This lowered specificity, compared to 227 

studies on the Fitbit Charge 4 (12) could partly be due to the characteristics of the study 228 
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population, including a higher obesity rate, which may impact the performance of wrist-based 229 

heart rate sensors (11, 13). Overall, the sleep tracker demonstrated moderate accuracy of 79% 230 

(95% CI: 76-81%) in identifying sleep and wake stages. The accuracy in this study (79%) is not 231 

significantly different from the accuracy reported for the Fitbit Charge 4 (86.5%) (12). Overall, 232 

our results are consistent with the systematic review by Haghayegh et al. (15), which reported 233 

sensitivity values ranging from 0.87 to 0.99 and specificity values from 0.10 to 0.52.  234 

4.2. Comparison of sleep parameters 235 

Our analysis revealed no significant differences between WAT and PSG regarding the 236 

measurement of total sleep time (TST), sleep efficiency (SE), sleep onset latency (SoL), and 237 

overall sleep stage distribution, suggesting that the device might reliably measure these 238 

parameters. Although the WAT tended to overestimate TST by approximately 30 minutes, this 239 

difference was not statistically significant (p = 0.835). Similarly, there was no significant 240 

difference in SE between the two methods (p = 0.691). These results suggest that the WAT can 241 

measure sleep duration with reliable accuracy, including total sleep time and the proportion of 242 

time spent sleeping relative to time in bed. Our findings are consistent with those reported by 243 

Dong et al. (12), who found no significant differences in TST using the Fitbit Charge 3. In 244 

contrast, previous studies reporting overestimations of TST and SE by other WAT devices 245 

relative to PSG (11, 14) were not corroborated by our results. 246 

Furthermore, there was no significant difference in measuring SoL between the WAT and PSG 247 

(p = 0.691), indicating that the WAT accurately measures the time required for sleep initiation. 248 

Additionally, no significant differences were observed in the classification of sleep stages (p > 249 

0.05), which suggests that the WAT can reliably categorize different sleep stages—including 250 

light sleep (LS), deep sleep (DS), and REM sleep). Our results regarding REM sleep align with 251 

previous findings on the Fitbit Charge 4 and Fitbit Sense, although Dong et al. (12) noted that 252 

the Fitbit Charge 4 tended to overestimate LS while significantly underestimating DS. These 253 

discrepancies may be attributed to differences in study populations, device versions, and other 254 

potential confounding factors. 255 

A notable finding was the significant underestimation of wake-after-sleep onset (WASO) by the 256 

WAT (mean difference: 23.11 minutes, p = 0.011). Given that WASO is a key indicator of sleep 257 

quality and is linked to clinical outcomes such as daytime fatigue, impaired cognitive 258 

performance, and increased risks of chronic conditions (e.g., cardiovascular disease, diabetes) 259 
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(16), this discrepancy is clinically important. The underestimation may be attributed to the 260 

WAT's reliance on movement and heart rate signals for sleep/wake detection, which could lead 261 

to misclassification of brief awakenings as sleep (14, 17, 18). Additionally, factors such as age, 262 

obesity, and comorbid conditions might further impair the device’s wake detection capabilities 263 

(2, 19). The study population, consisting of patients referred for PSG due to suspected sleep 264 

disorders, might exhibit different sleep patterns and characteristics compared to healthy 265 

individuals, potentially contributing to the observed discrepancy in WASO measurement. 266 

Although our WASO findings are consistent with those from studies on the Fitbit Charge 2 and 267 

Fitbit Sense (11, 14), one study on the Fitbit Charge 4 reported no significant difference in 268 

WASO (p = 0.6426). Therefore, while the WAT shows promise in providing useful sleep 269 

metrics, clinicians should interpret WASO data with caution and consider complementary 270 

assessment tools when necessary. 271 

4.3. Study strengths and limitations 272 

This study has several strengths, including its pioneering validation of a commercially available 273 

sleep tracker in a Vietnamese clinical setting and its use of PSG as the reference standard, which 274 

enhances the reliability and validity of the findings. However, certain limitations should be 275 

noted. First, our sample size was relatively small due to resource constraints, specifically the 276 

limited availability of PSG at our institution. Second, we did not systematically collect detailed 277 

data on chronic comorbidities, although patients with significant psychiatric or medical 278 

conditions and medication use affecting sleep were excluded. Third, analyses were not adjusted 279 

for potential confounding factors (e.g., age, gender, BMI), given the sample size constraints and 280 

preliminary validation focus. Fourth, PSG scoring by a single technician precluded assessment 281 

of inter-rater reliability. Additionally, the proprietary algorithm of the WAT was not 282 

independently validated, and our epoch-by-epoch analysis excluded incomplete or artifact-283 

containing epochs, potentially affecting data completeness. Finally, the assumption of normal 284 

distribution of paired differences required for Bland–Altman analysis was not fully met in our 285 

sample, although there were no strong or extreme outliers. As such, the agreement results should 286 

be interpreted with caution, especially in light of the modest sample size. At this stage, the 287 

evidence is not yet sufficient to recommend the WAT as a full substitute for polysomnography 288 

in clinical practice. Future research with larger samples, subgroup analyses, independent device 289 
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validation, as well as investigations into cost-effectiveness and practical implementation, are 290 

recommended. 291 

5. Conclusion 292 

In summary, while the WAT demonstrated promising agreement with PSG for several key sleep 293 

parameters in a Vietnamese clinical population, these findings should be considered preliminary. 294 

Further studies are needed to confirm its utility and determine the appropriate role of WAT in 295 

routine sleep assessment, particularly in resource-constrained environments. 296 

 297 
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Table 1. Sleep characteristics according to polysomnography 349 
Variable Mean ± SD Median (IQR) Min–Max 

TIB, min 443.41 (84.85) 467 (444.5–489.5) 141–523.5 

TST, min 336.20 (86.55) 353.5 (290–394) 62–491 

SE, % 76.13 (12.62) 78 (70.7–84.6) 42.4–94.3 

SoL, min 33.12 (25.32) 29.5 (12.5–49.5) 4–139.5 

WASO, min 72.75 (47.42) 61 (33–105) 16–204 

LS, min 258.55 (68.49) 267.5 (225–315.5) 61–342.5 

DS, min 19.34 (31.13) 1 (0–25) 0–102 

REM, min 61.19 (38.49) 55.5 (38–76) 0–149 

Data are presented as mean (standard deviation), median (interquartile range), and range (minimum-350 
maximum). 351 
TIB indicates time in bed; TST, total sleep time; SE, sleep efficiency; SoL, sleep-onset latency; WASO, 352 
wake after sleep onset; LS, light sleep; DS, deep sleep; REM, rapid eye movement. 353 
  354 
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Table 2. Sensitivity, specificity, and accuracy of the wearable activity tracker in determining 355 
sleep-wake states 356 

Value Mean (SD) 95% CI 

Sensitivity (actual sleep) 0.93 (0.06) 0.91–0.95 

Specificity (actual wakefulness) 0.44 (0.19) 0.38–0.49 

Accuracy (actual sleep + actual wakefulness) 0.79 (0.09) 0.76–0.81 

Data are presented as mean (standard deviation), median (interquartile range), and range (minimum-357 
maximum). 358 
TIB indicates time in bed; TST, total sleep time; SE, sleep efficiency; SoL, sleep-onset latency; WASO, 359 
wake after sleep onset; LS, light sleep; DS, deep sleep; REM, rapid eye movement. 360 
 361 
  362 
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Table 3. Bland–Altman analysis of PSG vs WAT sleep variables 363 

Variable PSG, 
Mean 
(SD) 

FBC, 
Mean 
(SD) 

Bias (95% 
CI) 

LLOA (95% 
CI) 

ULOA 
(95% CI) 

P 
Value 

TST, min 336.2 
(86.6) 

366.3 
(85.2) 

–30.1 (–
43.8 to –
16.4) 

–121.7 (–
149.6 to –
102.0) 

61.5 (41.9 to 
89.5) 

0.835 

SE, % 76.1 
(12.6) 

82.3 
(10.5) 

–6.2 (–8.8 
to –3.5) 

–23.9 (–29.3 
to –20.1) 

11.6 (7.8 to 
17.0) 

0.078 

SoL, min 33.1 
(25.3) 

29.8 
(24.6) 

3.4 (–0.3 to 
7.0) 

–21.2 (–28.7 
to –15.9) 

27.9 (22.6 to 
35.4) 

0.691 

WASO, 
min 

72.8 
(47.4) 

49.7 
(34.5) 

23.1 (11.5 
to 34.7) 

–54.4 (–78.1 
to –37.8) 

84.0 (83.0 to 
124.3) 

0.011 

LS, min 258.6 
(68.5) 

253.8 
(67.2) 

4.8 (–9.6 to 
19.1) 

–91.2 (–120.4 
to –70.6) 

100.7 (80.1 
to 129.9) 

0.854 

DS, min 19.3 
(31.1) 

42.2 
(28.7) 

–22.9 (–
30.2 to –
15.4) 

–72.3 (–87.3 
to –61.7) 

26.6 (16.0 to 
41.6) 

0.475 

REM, min 61.2 
(38.5) 

70.3 
(38.5) 

–9.1 (–17.2 
to –0.9) 

–63.6 (–80.2 
to –51.9) 

45.4 (33.7 to 
62.0) 

0.995 

Results of Bland–Altman analysis comparing polysomnography (PSG) and the wearable activity 364 
tracker (WAT) device. Data are shown as mean (standard deviation) for both PSG and FBC. Bias is 365 
the mean difference (PSG minus WAT), while the lower (LLOA) and upper (ULOA) limits of agreement 366 
are presented with 95% confidence intervals (CIs). 367 
Abbreviations: TST, total sleep time; SE, sleep efficiency; SoL, sleep-onset latency; WASO, wake after 368 
sleep onset; LS, light sleep; DS, deep sleep; REM, rapid eye movement; SD, standard deviation; CI, 369 
confidence interval; LLOA, lower limit of agreement; ULOA, upper limit of agreement. 370 
Note: Rounding was performed to one decimal place. All p values were calculated by Bland–Altman 371 
analysis. 372 
 373 
 374 


