12 MedPharmRes, 2018, 2

ST
S MedPharmRes
/ MEDPH I \RWRH journal of University of Medicine and Pharmacy at Ho Chi Minh City
Z I
Do homepage: http://www.medpharmres.vn/ and http://www.medpharmres.com/
Review

Directed Acyclic Graphs: Alternative tool for causalinferencein epidemiology

and biostatistics research and teaching

Tran Ngoc Dang®, Khuong Quynh Long?, Huynh Thi Hong Tram?, Le Huynh Thi Cam Hong?, Vo Minh

Tuan®

“Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam,
b Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam.

Received March 22, 2018: Revised August 02, 2018: Accepted August 24, 2018

Abstract: The issue of causation is one of the major challenges for epidemiologists who aim to understand the
association between an exposure and an outcome to explain disease patterns and potentially provide a basis
for intervention. Suitably designed experimental studies can offer robust evidence of the causal relationships.
The experimental studies, however, are not popular, difficult or even unethical and impossible to conduct; it
would be desirable if there is a methodology for reducing bias or strengthening the causal inferences drawn
from observational studies. The traditional approach of estimating causal effects in such studies is to adjust
for a set of variables judged to be confounders by including them in a multiple regression. However, which
variables should be adjusted for as confounders in a regression model has long been a controversial issue in
epidemiology. From my observation, the adjustments using only “statistical artifacts” methods such as the
p-value<0.2 in univariate analysis, stepwise (forward/backward) are widely used in research and teaching
in Epidemiology and Statistics but without appropriated notice on the biological or clinical relationships
between exposure and outcome which may induce the bias in estimating causal effects. In this mini-review,
we introduce an interesting method, namely Directed Acyclic Graphs (DAGs), which can be used to reduce
the bias in estimating causal effects; it is also a good application for Epidemiology and Biostatistics teaching.
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INTRODUCTION

The objective of most epidemiological research is to
determine the causal inferences/effects of the exposure
on the outcome (i.e, an unbiased estimate of effect for an
exposure on an outcome). There are two types of causal
effects: individual vs. population; they are defined in
counterfactual terms: “Had the exposure differed, the
outcome would have differed” [1]. We give here a classical
example (modified from [2]) for clearance. On June 1%, Joe
received a new kidney (the exposure). Five days later, he
died (the outcome). Just imagine that we can somehow know
that had Joe not received a kidney transplant on June 1% (all
other things in his life is unchanged) then he would have
been alive 5 days later. We inferred that the transplant had a
causal effect on Joe’s five-day survival. From above example,
we understand that for casual effect, we must compare the
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actual outcome (i.e. Joe died after 5 days) to the potential
outcome (i.e. death or alive) under the counterfactual
condition (i.e, Joe had not received a kidney transplant). If
the actual outcome differs compared to that of the potential
outcome under the counterfactual condition, we define that
the exposure had a causal effect on the outcome. Similarly,
at the population level, consider a dichotomous exposure
variable A (1: exposed, 0: unexposed) and a dichotomous
outcome variable Y (1: death, 0: survival). The Pr[Y*'=1] is
defined as the probability of the outcome occurring when the
entire population is exposed; and the Pr[Y*’=1] is defined
as the probability of the outcome occurring when the entire
population is un-exposed. Then, the exposure had causal
effect in the population if Pr[Y*'=1] - Pr[Y*°=1] # 0. In
reality, a population cannot simultaneously receive different
exposure status, however, we can use observed data to infer
the probability distributions of counterfactual variables (i.e.,
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under exchangeability assumptions). In an ideal randomized
experiment, the following equations hold true:

Pr[Y*'=1] = Pr[Y=1|A=1] (1)
Pr[Y*=1] = Pr[Y=1|A=0] )

with Pr[Y=1|A=1] is defined as the conditional
probability of the outcome occurring in the subset of the
population who exposed; and Pr[Y=1|A=0] is defined as the
conditional probability of the outcome occurring in the subset
of the population who un-exposed. Therefore, the population
casual effect of an exposure on the outcome is estimated
from Pr[Y=1|A=1] - Pr[Y=1|A=0] using only observed data.
In non-experimental studies (i.e, observational studies),
to make the equations (1) (2) hold true; it requires some
covariates adjustment. The question then what covariates we
should adjust for to generate exchangeability and avoid bias.

The traditional approach of estimating causal effects
in observational studies is to adjust for a set of variables
judged to be confounders by including them in a multiple
regression model. The univariate analysis based method
use p-value threshold (e.g, p-value < 0.2) to include factors
from univariate analyses into multiple regression models [3],
while stepwise (forward/backward) are automatic variable
selection procedures using p-value or other selection criteria
(such as AIC, BIC). The implicit assumption underlying the
above-mentioned approach is that, although not all variables
selected will be confounders, all important confounders will
be selected [3]. Regularization based methods like Lasso or
Ridge regression consist of shrinking the model coefficients
by penalizing the ones that close to zero. Another method
compares adjusted and unadjusted effect estimates, in which,
if the relative change after adjustment for certain variable is
greater than 10% (or 20%), for example, then the variable is
selected. The implicit in this approach is that any variable
substantially associated with an estimated change is worth
adjusting for [4]. Structural equation modeling (SEM)
is another statistical tool for evaluating the relations in
epidemiological research, particularly in behavioral science
[5]. However, all of these strategies relied only on statistical
artifacts without any biological or clinical relationships
and that may lead to bias due to the omission of important
confoundersorinappropriate adjustment fornon-confounders.
In order to demonstrate that Stepwise automatic variable
selection may obtain an inappropriate result, we conducted
a simulation (see R code in Supplementary section). In this
case, although we generated variable y (i.e., the outcome
variable) that depended only on variable x1, the Stepwise
selection using AIC suggested both variables x1 and x3 were
associated with the outcome variable. Some other typical
examples such as the effectiveness of HIV treatment [6] or
the Birth weight paradox shows the paradoxical results when
examining the causal effects of exposure during pregnancy on
perinatal outcomes due to inappropriate adjustment for birth
weight [7]. From my observation, the adjustments using only
“statistical artifacts” methods as mentioned above, are widely
teaching in Epidemiology and Biostatistics but without
appropriated notice on the biological or clinical relationships
between exposure and outcome which may induce the bias
in estimating causal effects. In the next section, we introduce
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an interesting method, namely Directed Acyclic Graphs
(DAGsS), which can be used to reduce the bias in estimating
causal effects; it is also a good application for Epidemiology
and Biostatistics teaching.

Directed Acyclic Graphs (DAGs)
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Figure 1. Illustrations of confounders in DAGs

Directed Acyclic Graphs is a method relied on biological
and clinical relationships and to help examine if bias is
potentially reduced or increased when conditioning on
variables, and finally identify sets of variables called
sufficient adjustment sets that if adjusted for, would yield
asymptotically unbiased estimates of the causal effect of
interest. The “directed acyclic graphs” name is given by:
(1) “graph” is a structure composed of a set of nodes (or
vertices) that correspond to the variables or factors, and some
pairs of nodes are connected by a straight line called edge or
arc indicating their relationship; (2) “directed” indicates that
those edges have a direction associated with them; and (3)
“acyclic” means that the edges are not oriented in the same
direction, forming a cycle. In theory, a confounder is defined
as an extraneous factor that fully or partially accounts for the
observed effect of the exposure on the outcome [8]. DAGs
provide a more visible definition that variables become
confounders if they have met the following criteria (1)
causally associated with the exposure; (2) causally associated
with the outcome conditional on the exposure; and (3) not in
the causal pathway between the exposure and the outcome
[8]. For instance, variable C is a confounder for the relation
between the exposure E and the outcome O (Figure la)
because there are arrows from C to E and C to O indicate that
they are causally associated, and C is not on the causal path
from E to O. In contrast, variable X in the Figure 1b is not
a confounder but a mediator variable since X is involved in
the causal path from E to O, indicated by two edges directed
from E to X then from X to O. Therefore, to estimate
the effect of E on O, we need to adjust for confounder C
according to Figure la, but X is not a confounder according
to 1b. The adjustment of X in Figure 1b related to the terms
of direct and indirect effects that discussed comprehensively
on textbook of mediation analysis [9].

There are many terms involved in DAGs theory that
we could not cover here, we invite the reader to refer to
the chapter 12 of epidemiology textbook by Rothman,
KIJ.; Greenland, S; Lash, TL for details [8]. The two terms:
backdoor paths and colliders we mentioned here is to help
to explain the following example (shown in Figure 1). The
backdoor path is a path that goes against the direction of the
arc on the path, but can then follow or oppose the direction
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of any subsequent arc [8, 10]. To illustrate, in Figure la we
first start with E and move in the reverse direction of the
path directing to C, then move in the same direction to O.
The path from E to O via C called backdoor path. When the
backdoor paths exist and are “open”, the estimate of effect
between exposure and outcome will be biased. The variables
in backdoor paths are judged to be confounders (such as C)
and we need to adjust at least one confounder to block the
backdoor paths in which it is located. A variable is a collider
if there are two arrows in the same path go toward it. Noted
that collider is naturally blocked, it means that a backdoor
path is blocked if it contains collider, and if we adjust for a
collider, the backdoor paths (i.e, contain the collider) will be
opened.

An example of DAG
, S
SES Difficulty conceiving
!
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/Pre—natal care, /
& “®

Vitamins Birth defects

Figure 2. An example of DAG

Figure 2 shows an example of a simple DAG. Suppose
we want to estimate the effect of vitamins on birth defects,
which variables must be adjusted for? do we need to adjust
for all four variables that showed in Figure 2?. Our objective
is to determine Minimal Sufficient Adjustment Sets (MSAS)
that not only easy to calculate but also saving the research
resource of data collection. As discussed above, all backdoor
paths from birth defects to vitamins must be blocked to
obtain the true effect of vitamins on birth defects. There are
three opening backdoor paths: (1) Birth defects<Pre-natal
care< Socioeconomic status (SES)->Vitamins; (2) Birth
defects&Maternal genetics—=> Difficulty conceiving—> Pre-
natal care—>Vitamins; and (3) Birth defects<Pre-natal
care—> Vitamins; and one “natural blocked” backdoor
path: (4) Birth defects&Maternal genetics—> Difficulty
conceiving>Pre-natal ~ care<~SES->Vitamin  (because
Pre-natal care is a collider in this path). The most obvious
confounder is pre-natal care, it is located in all three opening
backdoor paths, therefore, when we adjust for it, all the three
backdoor paths will be blocked. However, the adjustment
of pre-natal care doesn’t mean that all the backdoor paths
are blocked. Since pre-natal care is also a collider for
socioeconomic status and difficulty conceiving, adjusting
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for pre-natal care will open the “natural blocked” backdoor
path number fourth. Therefore, adjusting for at least one
more variable in the fourth backdoor path is needed. As a
result, there are three possible MSAS: (1) pre-natal care
and socioeconomic status; (2) pre-natal care and difficulty
conceiving; (3) pre-natal care and maternal genetics. The
choice then will be depended on our intent and available data.

In more complex situations we can build a DAG using
the six-step approach [11] or DAG software, which is free,
developed by Textor J, et al [12] and available at http://www.
dagitty.net.

One of the main limitations of DAG that is only a
qualitative approach thus cannot quantify the magnitude or
direction of the bias. In order to calculate the magnitude of
quantitative relationships, Structural equation modeling or
Bayesian networks may be helpful.

CONCLUSION

The DAG approach provides a way of precisely specifying
a researcher’s causal assumptions and help to determine
which variables should and should not be included in a
regression model in order to minimize the bias in estimating
the magnitude of causal effects.
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Supplementary 1

R code for Stepwise simulation
set.seed(1234)
reproducible example

x <- sample (500:1000, 500)# sampling 500
samples from an array of 500-1000

x <- matrix(x,nc=5) # build a
matrix of 100 rows, 5 cols

# set seed for

y ~ X1 + X2 + X3 + X4 + X5

Step: AIC=-14.59
y ~ X1 + X2 + X3 + X4

Step: AIC=-16.38
y ~ X1 + X3 + X4

Step: AIC=-18.12
y ~ X1 + X3

e O o o o e e

Df Sum of Sg RSS AIC

<none> 79 -18.12
- X3 1 2 80 -17.88
+ X4 1 0 78 -16.38
+ X2 1 0 78 -16.32
+ X5 1 0 79 -16.12
- X1 1 2070139 2070218 997.80
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y <- x[,1] + rnorm(100)
variable X1 only

# vy depends on

mydata <- data.frame(y, as.matrix(x))
model <- 1lm(y~., mydata) # include
all predictors

step (model, direction = “both”)

# Start: AIC=-12.59
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Supplementary 2

R code for reproduce the example of DAG in Figure 2
testImplications <- function( covariance.matrix, sample.size ) {
library (ggm)
tst <- function (i) { pcor.test( pcor(i,covariance.matrix), length(i)-2, sample.
size )Spvalue }
tos <- function (i) { paste(i,collapse=" “) }
implications <- list(c(“Vitamins”,”Difficulty conceiving”,”SES”,”pre-natal care”),
c(“Witamins”,”Maternal genetics”,”Difficulty conceiving”),
c(“Witamins”,”Maternal genetics”,”SES”,”pre-natal care”),

(
c(“Birth deffects”,”SES”,”Difficulty conceiving”,”pre-natal care”,”Vitamins”),
c(“Birth deffects”,”SES”,”pre-atal care”,”Maternal genetics”,”Vitamins”),
c(“Birth deffects”,”Difficulty conceiving”,”Maternal genetics”,”SES”,”pre-natal
care”),

c(“Birth deffects”,”Difficulty conceiving”,”pre-natal
care”,”Vitamins”,”Maternal genetics”),
c(“SES”,”Difficulty conceiving”),
c(“SES”,”Maternal genetics”),
c(“pre-natal care”,”Maternal genetics”,”Difficulty conceiving”))
data.frame( implication=unlist (lapply(implications, tos)),
pvalue=unlist( lapply( implications, tst ) ) )}



